Zum Inhalt springen

Schwere, Elektricität und Magnetismus/§. 94.

aus Wikisource, der freien Quellensammlung
« §. 93. Schwere, Elektricität und Magnetismus §. 95. »
Für eine seitenweise Ansicht und den Vergleich mit den zugrundegelegten Scans, klicke bitte auf die entsprechende Seitenzahl (in eckigen Klammern).

|[313]

§. 94.
Das Potential der Wechselwirkung zweier Ströme.


 Der Satz des vorigen Paragraphen lässt sich ohne weiteres auf zwei nichtlineäre geschlossene Ströme übertragen. Man hat nur anzunehmen, dass die specifischen Stromintensitäten an jeder Stelle des ersten wie des zweiten Leiters im Zeitelement nur unendlich kleine Aenderungen erfahren, und die Hypothese aufzustellen, dass die gesammte Arbeit, welche im Zeitelemente von der Wechselwirkung der beiden galvanischen Ströme herrührt, das vollständige Differential einer Function sei, welche die charakteristischen Eigenschaften eines Potentials (im weiteren Sinne) besitzt.

 Um dies einzusehen, braucht man nur zu bedenken, dass man den einen wie den anderen nichtlineären Strom je als ein System von lineären Strömen auffassen kann.

 Es wiederholt sich hier der Gedankengang des vorigen Paragraphen. Für die Function haben wir in §. 89 [Gleichungen (5), (6), (7)] die Ausdrücke gefunden:


(1)


|[314]Wir wollen nun diese Function auch für den Fall betrachten, dass die specifischen Stromintensitäten von der Zeit mit abhängig sein können. Dann kommt es auf die Aenderungen an, welche die Function im Zeitelemente unter den verschiedenen zulässigen Voraussetzungen erleidet. Es werde mit die Aenderung bezeichnet, welche zu Stande kömmt, wenn die specifischen Stromintensitäten in beiden Leitern als unabhängig von angesehen werden, mit die Aenderung, welche davon herrührt, dass man die specifischen Stromintensitäten nur im zweiten Leiter von der Zeit unabhängig nimmt, und mit die Aenderung, welche sich ergibt, wenn die specifischen Stromintensitäten nur im ersten Leiter von unabhängig genommen werden. Endlich soll das vollständige Differential von sein, welches in dem Zeitelement zu Stande kommt, wenn die gegenseitige Lage der Elemente des ersten und zweiten Leiters und die specifischen Stromintensitäten an jeder Stelle beider Leiter in jenem Zeitelement unendlich kleine Aenderungen erleiden.

 Dann haben wir zunächst


(2)


Setzt man die beiden Ströme als constant voraus, so wird nach §. 89 in dem Zeitintervall von bis die elektrodynamische Elementararbeit


(3)


geleistet. Dieser Ausdruck für die elektrodynamische Elementararbeit bleibt auch dann noch richtig, wenn an jeder Stelle des einen wie des anderen Leiters die specifischen Stromintensitäten in dem Zeitelemente unendlich kleine Aenderungen erleiden. In diesem Falle ist kein vollständiges Differential und folglich für die elektrodynamische Arbeit allein kein Potential vorhanden. Nun werden aber auch noch in beiden Leitern elektromotorische Arbeiten verrichtet, welche von der Wechselwirkung der beiden galvanischen Ströme herrühren.

 Wir stellen die Hypothese auf, dass für die gesammte Arbeit, welche vermöge der Wechselwirkung der beiden galvanischen Ströme geleistet wird, ein Potential existirt. Um diese Gesammtarbeit zu finden, haben wir also zu (3) einen solchen Beitrag hinzuzufügen, dass die Summe ein vollständiges Differential ist. Dieser Beitrag ist |[315]


(4)


und die Summe ist dann das vollständige Differential von .

 Folglich ist


(5)


das Potential der Wechselwirkung der beiden galvanischen Ströme.

 Die gesammte Arbeit zerlegt sich in drei Bestandtheile, nemlich

  erstens: die elektromotorische Arbeit im ersten Leiter



  zweitens: die elektromotorische Arbeit im zweiten Leiter



  drittens: die elektrodynamische Arbeit beider Ströme auf einander



 Nachdem wir das Potential der Wechselwirkung der beiden galvanischen Ströme kennen gelernt haben, wollen wir diese Wechselwirkung zu erklären versuchen aus der Wechselwirkung der einzelnen elektrischen Theilchen.

 Zu dem Ende ist es nöthig, allgemein zu erörtern, wie die Sätze der §§. 36 bis 43 abzuändern sind, wenn das Potential nicht nur von den Coordinaten, sondern auch von den Geschwindigkeiten der bewegten materiellen Punkte abhängt.