= AZ · TZ · : 2 · AT² und weil Mp die stündliche Bewegung des Mondes auf der Peripherie QAqa ist, die mittlere stündliche Veränderung der Neigung.
Ferner ist unmittelbar |
= sin PGp, |
für |
den |
Radius |
= 1
|
|
= |
„ |
„ |
„ |
= AT
|
= sin ATn, = cos ATn, mithin = ½sin ATn · cos ATn = ¼ sin 2 · ATn.
No. 269. S. 440. (Fig. 200.) In diesem Falle trifft N mit Q zusammen, es geht daher AZ in AT, TG in TK über und wir erhalten JT · TG = AT · sin pTQ · AT · cos pTQ = ½AT² sin 2pTQ, so wie = AT · sin 2pTQ.
No. 270. S. 441. Um die Summe der im Text aufgeführten Sinusse zu finden, wollen wir uns den Quadranten ½π in n gleiche Theile getheilt denken, wo n eine grosse Zahl, hier 1771/6 bezeichnet; alsdann haben wir die Reihe bis zu summiren. Setzen wir nun = x, so wird die gesuchte Summe S = sin x + sin 2x + sin 3x + . + … + sin νx, wo νx = π = π – π, (ν – 1)x = π = π – π. Setzen wir statt der Sinusse die ihnen entsprechenden Exponentialfuncionen, so wird für i = ,
Da aber sin (ν – 1) x = sin (π – π) = sin ; sin νx = sin