werden, wenn das Gesetz der Planeten beibehalten wird, nicht weit von der Ebene der Ekliptik abweichen. So weit ich bis jetzt habe wahrnehmen können, findet der dritte Fall statt. Die Kometen befinden sich nämlich meistens im Zodiacus und erreichen kaum jemals eine heliocentrische Breite von 40°[1] Sie bewegen sich ferner in sehr nahe parabolischen Bahnen, wie ich aus ihrer Geschwindigkeit schliesse. Die letztere verhält sich nämlich, wenn eine Parabel beschrieben wird, überall zu derjenigen Geschwindigkeit, mit welcher ein Komet oder Planet sich in einem Kreise, dessen Halbmesser seiner Entfernung von der Sonne gleich ist, bewegen könnte, wie : 1 (nach §. 36., Zusatz 7. des ersten Buches). Nach meiner Rechnung fand sich nun nahe eine solche Geschwindigkeit der Kometen. Ich untersuchte die Sache, indem ich beiläufig die Geschwindigkeiten aus den Entfernungen und diese aus der Parallaxe und den Erscheinungen des Schweifes zusammengenommen, ableitete. Die Fehler, um welche die Geschwindigkeit grösser oder kleiner wurde, waren nicht bedeutender, als sie aus den Entfernungen, welche auf jene Weise bestimmt worden waren, hervorgehen konnten. Ich bediente mich aber auch der folgenden Berechnung.
§. 74. In welcher Zeit die in Parabeln sich bewegenden Kometen die grosse Bahn durchlaufen werden.
Theilt man den Radius der grossen Bahn in 1000 Theile, so mögen die Zahlen in der 1. Columne der folgenden Tabelle den Abstand des Scheitels der Parabel vom Mittelpunkte der Sonne, in solchen Theilen ausgedrückt, bezeichnen. Alsdann wird der Komet sich in den Zeiten, welche in der zweiten Columne stehen, vom Perihel zur Oberfläche einer Kugel bewegen, deren Mittelpunkt in der Sonne liegt und deren Radius dem der grossen Bahn gleich ist. In den Zeiten, welche in der 3., 4. und 5. Columne angegeben sind, wird er jenen Abstand von der Sonne verdoppeln, verdrei- oder vervierfachen.
Abstand zwischen dem Mittelpunkt der Sonne und dem Perihel des Kometen. |
Zeit, welche der Komet braucht, um von einem Perihel zu einem, dem Radius der grossen Bahn gleichen Abstande von der Sonne zu gelangen. | |||
1. | 2. | 3. | 4. | 5. |
0 5 10 20 40 80 160 320 640 1280 2560 |
d. h. ' 27 11 12 27 16 07 27 21 00 28 06 40 29 01 32 30 13 25 33 05 29 37 13 46 37 09 49 |
d. h. ' 77 16 28 77 23 14 78 06 24 78 20 13 79 23 34 82 04 56 86 10 26 93 23 38 105 01 28 106 06 35 |
d. h. ' 142 17 14 144 03 19 153 16 08 200 06 43 147 22 31 |
d. h. ' 219 17 30 221 08 54 232 12 20 297 03 46 300 06 03 |
In welcher Zeit die Kometen in die Sphäre der grossen Bahn ein-
- ↑ [664] No. 361. S. 567. Wir müssen bemerken, dass sich für neuere Kometen die Neigung weit grösser ergeben hat, und daher ihre Breite grösser als 40° werden kann. Ferner sind die Grenzen der Zone, innerhalb deren die Planeten sich bewegen, des sogenannten Zodiacus durch die Entdeckungen der kleinen Planten wesentlich erweitert worden.
Isaac Newton: Mathematische Principien der Naturlehre. Robert Oppenheim, Berlin 1872, Seite 567. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:NewtonPrincipien.djvu/575&oldid=- (Version vom 1.8.2018)