Zum Inhalt springen

Seite:NewtonPrincipien.djvu/649

aus Wikisource, der freien Quellensammlung
Dieser Text wurde anhand der angegebenen Quelle einmal korrekturgelesen. Die Schreibweise sollte dem Originaltext folgen. Es ist noch ein weiterer Korrekturdurchgang nötig.

= α = 360" — αPEF und αPEF = Winkelabstand von ihrem Apogeum α = v (wahr. Anomalie ), mithin CDF = 360° — v.

No. 278. S. 446. Nach Hansen a. a. O. ist die mittlere tägliche Bewegung der Sonne von ihrem Perigeum = 59' 8,"3, die mittlere tägliche Bewegung des Perigeums des Mondes = 6' 41,"0, daher die tägliche mittlere Bewegung der Sonne vom Perigium (Apogeum) des Mondes = 52' 27,"3. Es wird log = 4,55070 und log = 4,55002.

No. 279. S. 447. Es wird hier TC = 5505 · sin 12° 18' = 1172,73 und FD = 3/100 · 1172,3 = 35,2.

Fig. 266.

No. 280. S. 448. Am grössten wird die, durch die Bewegung des Mittelpunktes der Mondbahn in dem kleinen, zu DF gehörigen Kreise hervorgebrachte Veränderung des Mondortes erscheinen, wenn man die diametral entgegengesetzten Punkte F, F' des Mittelpunktes betrachtet, wo also FDF' diese von T aus gesehene Veränderung unterspannt. Dieselbe wird = Arc sin und da FF' = 70,4; TD = 100000 ist, so ist diese Veränderung = 2' 25".

No. 281. S. 447. Aus diesem Grunde hat wohl Tobias Mayer die noch heute in Anwendung kommende Regel aufgestellt, bei der Berechnung der Mondfinsternisse den Durchmesser des Schattens in der Gegend des Mondes um 1/60 zu vergrössern.

Fig. 267.

No. 282. S. 449. Es sei TH der Horizont eines Ortes T auf der Erde, S der Ort der Sonne, deren Hohe über dem Horizont STH = h sei, Z das Zenith. Befände sich die Sonne in Z, so würde ihre Kraft P zur Erhebung des Wassers in T nach dem Obigen zu bestimmen sein. Hieraus ergibt sich die längs TS wirkende Seitenkraft, nach dem Parallegramme der Kräfte, TM = P sin TZM = P sin h und hieraus die längs TZ, d. h. nach dem Zenith hinwirkende Seitenkraft TN = TM sin TMN = P sin h². Diese Kraft ist die gesuchte, wenn S nicht im Zenith Z, sondern in der Höhe h über dem Horizont steht. Sie ist daher proportional sin h² = ½(1 — cos 2h) = ½ sinus versus 2h.

No. 283. S. 450. Ein Theil dieses Satzes ist nicht recht klar dargestellt. Die dritte Fluth nach der Syzygie tritt etwa 36 Stunden

Empfohlene Zitierweise:
Isaac Newton: Mathematische Principien der Naturlehre. Robert Oppenheim, Berlin 1872, Seite 641. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:NewtonPrincipien.djvu/649&oldid=- (Version vom 1.8.2018)