Zum Inhalt springen

Seite:Dynamik des Electrons.djvu/8

aus Wikisource, der freien Quellensammlung
Fertig. Dieser Text wurde zweimal anhand der Quelle korrekturgelesen. Die Schreibweise folgt dem Originaltext.

Electronenbewegung nur von der Geschwindigkeit abhängig. Die Richtung des Vectors der Bewegungsgröße stimmt, bei den in den folgenden Paragraphen zu Grunde gelegten Annahmen über Form und Ladungsverteilung des Electrons, mit der Richtung des Geschwindigkeitsvectors überein. Bezeichnet G den Betrag der Bewegungsgröße, so gilt, nach (7), für Beschleunigung in der Bahnrichtung

.

Hieraus, in Verbindung mit (3), folgt für die longitudinale electromagnetische Masse die Formel

9) .

Erfährt andrerseits das Electron eine Beschleunigung senkrecht zur Bahnrichtung, so bleibt der Betrag der Geschwindigkeit, mithin auch derjenige der Bewegungsgröße, constant, nur die Richtung beider Vectoren wird im Raume gedreht, und zwar mit der Winkelgeschwindigkeit , wenn r den Krümmungsradius der Bahn bezeichnet. Der Zuwachs, welchen die genannten Vectoren in der Zeiteinheit erfahren, wird dargestellt durch Vectoren vom Betrage

bezw. ,

die nach dem Krümmungsmittelpuncte der Bahn hinweisen. Aus (7) folgt mithin

,

andererseits aus (3)

.

Mithin ist

10)

die transversale electromagnetische Masse. Bei großen Geschwindigkeiten ist die electromagnetische Bewegungsgröße des Electrons nicht mehr der Geschwindigkeit proportional; die transversale Masse wird hier verschieden von der longitudinalen. Eine Kraft, die in der Richtung der Geschwindigkeit wirkt, ruft daher

Empfohlene Zitierweise:
Max Abraham: Dynamik des Electrons. , Berlin 1902, Seite 27. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:Dynamik_des_Electrons.djvu/8&oldid=- (Version vom 31.7.2018)