Zum Inhalt springen

Schwere, Elektricität und Magnetismus:348

aus Wikisource, der freien Quellensammlung
Bernhard Riemann: Schwere, Elektricität und Magnetismus
Seite 334
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.

Achter Abschnitt. §. 104.


potential bezieht sich überhaupt auf zwei elektrische Theilchen und . Handelt es sich um das Potential zweier Ströme auf einander, so hat man jedes Theilchen des einen Stromes mit jedem Theilchen des anderen Stromes zusammenzufassen, für jede solche Zusammenstellung das Einzelpotential zu bilden und alle Einzelpotentiale zu summiren. So kömmt aus §. 96 (13) der Ausdruck für in Gleichung (12) desselben Paragraphen richtig zu Stande, und ehenso aus (II) der Ausdruck für in Gleichung (5) des §. 98.

 Soll nun aus dem Fundamentalgesetze Weber’s


(1)


oder aus dem Fundamentalgesetze Riemann’s


(2)


die gesammte Wechselwirkung aller elektrischen Theilchen berechnet werden, welche überhaupt in zwei geschlossenen Leitern in Ruhe und in Strömung begriffen sind, so hat man für jede Combination von zwei verschiedenen Theilchen und den Ausdruck (1) resp. (2) herzustellen und zu summiren.

 Hier sind dreierlei Combinationen zu unterscheiden, nemlich zwei ruhende Theilchen, ein ruhendes und ein bewegtes Theilchen und endlich zwei bewegte Theilchen.

 Wir wollen den besonderen Fall von zwei geschlossenen constanten Strömen betrachten, um zu untersuchen, ob Weber’s Grundgesetz, resp. Riemann’s Grundgesetz mit Ampère’s Gesetze im Einklang stehen oder nicht. Bei Ampère handelt es sich um die elektrodynamische Wechselwirkung zwischen zwei Stromelementen, von denen das eine dem ersten, das andere dem zweiten Strome angehört. Es kommen also hier nur die Wechselwirkungen zwischen den bewegten elektrischen Theilchen der beiden constanten Ströme in Betracht.

 Nun lässt sich zunächst beweisen, dass der von herrührende Beitrag zu dem Gesammtpotential der bewegten elektrischen Theilchen gleich Null ist. Denn wir können mit einem einzelnen Theilchen zunächst alle anderen Theilchen in Combiimtion bringen. Dann tritt aus dem Summenzeichen heraus, und es ist die