Zum Inhalt springen

Schwere, Elektricität und Magnetismus:331

aus Wikisource, der freien Quellensammlung
Bernhard Riemann: Schwere, Elektricität und Magnetismus
Seite 317
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.

Der erweiterte Satz von Lagrange.


der ersten Potenz aufträten. Denn dadurch würde der zweite Bestandttheil von mit Gliedern behaftet sein, die von frei wären. Man sieht also, dass in die Grössen mindestens in der zweiten Potenz enthalten sein müssen.

 Am einfachsten nehmen wir für eine homogene Function zweiten Grades von , also


(5)


Die Coefficienten sind Functionen der Coordinaten sämmtlicher Punkte. Die Derivirte besteht dann aus einer homogenen Function dritten Grades von und einer homogenen Function ersten Grades derselben Variabeln und die auftretenden Coefficienten sind Functionen der Coordinaten . Nun hat aber die homogene lineare Function von , welche in vorkommt, ebenso wie die Function , von selbst schon die Form (1) und lässt sich in keiner andern Weise in diese Form bringen. Dagegen kann man die in auftretende Function dritten Grades in sehr mannigfaltiger Weise in die Form (1) bringen. Aus dem Ausdruck für die Arbeit sind also die bewegenden Kräfte nicht völlig bestimmt.

 Der Satz von der Erhaltung der lebendigen Kraft spricht sich aus in der Formel



Wir fragen nun, wie die Bewegung vor sich gehen müsse, damit dieser Satz in Gültigkeit sei.

 Zur Beantwortung dieser Frage haben wir einen Fingerzeig im §. 43. Dort ist bewiesen:

 Wenn nur von den Coordinaten abhängig ist und der Ausdruck dieser Function die Zeit explicite nicht enthält, wenn ferner eine homogene Function zweiten Grades von ist, so ist