Zum Inhalt springen

Schwere, Elektricität und Magnetismus:306

aus Wikisource, der freien Quellensammlung
Bernhard Riemann: Schwere, Elektricität und Magnetismus
Seite 292
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.

Sechster Abschnitt. §. 85.


die eben gelegte Fläche mehr hindurchströmt als von oben nach unten, haben wir nach §. 75 das Integral



durch die Begrenzungslinie zu erstrecken, und zwar von der negativen bis auf die positive Seite von . Der Werth dieses Integrals ist



Nun lässt sich aber im äusseren Raume wie im Innern des Ringes



setzen und dabei bemerken, dass im ganzen äusseren Raume



ist. Dadurch erhält man die Gleichung


(1)


Diese Gleichung würde unverändert bleiben, wenn man überall setzen wollte. Geht also ein Strom, dem die Function angehört, an einer Stelle durch eine Linie des zweiten Systems hindurch, so tritt er an derselben oder an einer anderen Stelle wieder auf die ursprüngliche Seite zurück. Folglich lassen sich die Linien des zweiten Systems auf der Oberfläche des Ringes (und mit ihnen die Begrenzung des Querschnittes ) so zurechtschieben, dass sie zu Strömungslinien der Ströme zweiter Art werden. Ihre Gleichungen sind in der allgemeinen Form enthalten


(2)


und es bedeutet den Werth der Function im Innern des Ringes unendlich nahe an seiner Oberfläche.

 Auf demselben Wege findet sich, dass die Linien des ersten Systems, passend angeordnet, Strömungslinien der Ströme erster Art sind. Sie werden festgelegt durch Gleichungen von der Form


(3)


wobei und die Werthe von in zwei Punkten sind, die einander unendlich nahe auf der äusseren und der inneren Seite der Ringoberfläche liegen.

 Die magnetischen Wirkungen im äusseren Raume rühren bloss von den Strömen her, die in den Bahnen (3) fliessen. Die Ströme, denen die Strömungslinien (2) angehören, üben im äusseren Raume keine magnetische Wirkung aus.