Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.
Der Ring.
§. 85.
Fortsetzung: Der Ring.
Der gegebene Körper sei ein Ring, also zweifach zusammenhangend (Fig. 47). Wir zerlegen ihn durch einen Querschnitt und den äusseren Raum durch einen Querschnitt je in einen einfach zusammenhangenden Raum. Die Begrenzungslinien der Querschnitte und liegen, wie immer, in der Oberfläche des Ringes. Es sind zwei in sich zurücklaufende Linien, die einander in einem Punkte durchschneiden. Die Begrenzungslinie von ist so beschaffen, dass jede Fläche, der sie zur vollständigen Begrenzung dient, die Axe des Ringes in einem Punkte schneidet. Die Fläche lässt sich dagegen über ihre Begrenzung so in das Innere des Ringes fortsetzen, dass die Axe desselben ganz in dieser Fortsetzung liegt. Nun kann man auf der Oberfläche des Ringes zwei Systeme von in sich zurücklaufenden Linien ziehen, so dass die Linien eines und desselben Systems von einander völlig getrennt liegen, dagegen jede Linie des ersten Systems die Linien des zweiten Systems in je einem Punkte schneidet. Die Systeme sollen so beschaffen sein, dass je zwei benachbarte Linien desselben Systems einander unendlich nahe liegen, und dass die Begrenzung von zu dem ersten, die Begrenzung von zu dem zweiten Systeme gehört.
Wir nehmen zwei Punkte, die einander unendlich nahe auf entgegengesetzten Seiten des Querschnittes liegen und verbinden sie durch eine Linie, die ganz innerhalb des einfach zusammenhangenden äusseren Raumes verläuft. Diese Linie kann man zur Begrenzung einer Fläche machen, welche die Oberfläche des Ringes in irgend einer Linie des zweiten Systems durchschneidet. Wir stellen uns auf derjenigen Seite der Fläche auf, auf welcher ein positiver Umlauf durch die Begrenzung von der negativen auf die positive Seite von führt. Um die Elektricitätsmenge zu finden, welche in der Zeiteinheit von unten nach oben durch