Schwere, Elektricität und Magnetismus:195
Bernhard Riemann: Schwere, Elektricität und Magnetismus | ||
---|---|---|
Seite 181 | ||
<< Zurück | Vorwärts >> | |
fertig | ||
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.
|
Kraft aus, deren Richtung in die Verbindungslinie der beiden Punkte fällt. Die Grösse der Kraft ist proportional dem Producte der beiden Elektricitätsmengen und umgekehrt proportional dem Quadrat ihrer Entfernung. Sie ist Abstossung, wenn die beiden elektrischen Theilchen gleichartig, sie ist Anziehung, wenn die Theilchen ungleichartig sind.
Sind also und zwei Zahlen, die nach Zahlwerth und Vorzeichen die Elektricitätsmenge des einen und des anderen elektrischen Theilchens angeben, und ist die Entfernung der beiden Theilchen, so ist
(1) |
die Kraft, welche sie in der Richtung der Verbindungslinie auf einander ausüben. Diese Kraft ist Abstossung oder Anziehung, je nachdem sie positiv oder negativ ist. Die Einheit der Elektricitätsmenge ist dabei so gewählt, dass ist, wenn und ist.
Die Aufgabe der Elektrostatik lässt sich so aussprechen:
Es ist eine Anzahl Isolatoren gegeben und in jedem von ihnen die Vertheilung der Elektricität bekannt. Ausserdem hat man Leiter, denen der Reihe nach die Elektricitätsmengen mitgetheilt sind. Es fragt sich, wie im Gleichgewichtszustande die Elektricität sich in jedem Leiter und an seiner Oberfläche vertheilt hat.
Wir bezeichnen mit die Potentialfunction der gesammten Elektricität. Der Ausdruck für ist leicht herzustellen. Wir nehmen im Punkte die positive Einheit der Elektricität an und bezeichnen mit die Elektricitätsmenge im Punkte . Mit werde der Abstand beider Punkte bezeichnet. Dann ist nach der Definition der Potentialfunction
(1) |
wenn die Summirung über alle elektrisch geladenen Punkte