Schwere, Elektricität und Magnetismus:130
Bernhard Riemann: Schwere, Elektricität und Magnetismus | ||
---|---|---|
Seite 116 | ||
<< Zurück | Vorwärts >> | |
fertig | ||
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.
|
Radius aufzufassen. Dem Werthe entspricht dann nur ein einziger Punkt, welcher auf der unendlich grossen Kugel dem Nullpunkte diametral gegenüberliegt.
Wir wollen nun zunächst in dem Ausdrucke für den reellen Integrationsweg durch einen complexen ersetzen.
Für jeden Werth, den die Variable annimmt, hat die Function
zwei Werthe, weil die Quadratwurzel zweideutig ist. Diese beiden Werthe sind innerhalb des abgegrenzten Flachenstückes an zwei Stellen einander gleich, und zwar , wenn nemlich und wenn . Für alle übrigen Werthe von innerhalb und auf der Begrenzung des Flächenstückes soll nur ein Werth von in Betracht gezogen werden, und zwar nach folgender Vorschrift. Wir zerschneiden die Zahlenebene längs der reellen Zahlenaxe von bis und setzen fest, dass die Variable bei ihrer Bewegung in der Ebene diesen Schnitt nicht überschreiten, wohl aber umgehen darf. Soll sie also die reelle Zahlenaxe von bis durchlaufen, so ist zu unterscheiden, ob dies unendlich nahe an dem Schnitt auf der rechten oder auf der linken Seite geschieht. Für solche Werthe von ist reell. Wir setzen fest, dass der positive Werth von genommen werden soll, wenn unendlich nahe an dem Schnitt auf der rechten (unteren) Seite liegt, und der negative Werth von , wenn unendlich nahe an dem