Zum Inhalt springen

Schwere, Elektricität und Magnetismus:038

aus Wikisource, der freien Quellensammlung
Bernhard Riemann: Schwere, Elektricität und Magnetismus
Seite 24
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.

Erster Abschnitt. §. 7.


§. 7.
Transformation von .


 Der Ausdruck für lautet:



Nun ist aber, wie man leicht sieht:



 Folglich kann man schreiben


(1)


 Die dreifache Integration ist über den ganzen mit anziehender Masse erfüllten Raum auszudehnen. Wir bemerken darüber das Folgende. Das Coordinatensystem sei so gelegt, dass für jeden Punkt im Innern und in der Oberfläche der anziehenden Masse die Coordinaten positiv sind. Nöthigenfalls lässt sich dies durch parallele Verschiebung der Coordinaten-Ebenen erreichen. In der Ebene zeichnen wir ein unendlich kleines Rechteck, dessen Seiten von der Länge und resp. den Axen der und resp. der parallel laufen. Der dem Anfangspunkt zunächst gelegene Eckpunkt habe die Coordinaten . Ueber diesem Rechteck als Basis soll ein gerades Prisma errichtet werden, dessen Seitenkanten parallel zur Axe der laufen. Die Lage des Punktes wird so gewählt, dass dieses Prisma den mit Masse erfüllten Raum durchdringt. Wir bezeichnen mit und resp. die auf der Axe gezählten Coordinaten der Eintritts- und der Austrittsstelle. Tritt das Prisma öfter ein und aus, so sollen die Abscissen der Eintrittsstellen, die Abscissen der Austrittsstellen sein, und zwar so, dass



Die Bestandtheile des Elementarprisma, welche innerhalb der anziehenden Masse liegen, zerschneiden wir in unendlich viele gerade