MKL1888:Parallēl
[707] Parallēl (griech., „nebeneinander stehend“, gleichlaufend), in der Geometrie Bezeichnung für zwei gerade Linien oder zwei Ebenen oder eine Gerade und eine Ebene, die überall denselben senkrechten Abstand haben und sich daher nirgends in endlicher Entfernung schneiden, wie weit man sie auch verlängern mag. Nach dem Vorgang von Desargues (1593–1662) und Newton sagt man auch, daß sich dieselben in unendlicher Ferne schneiden.
Werden zwei parallele Gerade a und b (s. Figur) von einer dritten Geraden c geschnitten, so heißen die Winkel α und α′, β und β′, γ und γ′, δ und δ′ korrespondierende Winkel, α und δ′, β und γ′ äußere Wechselwinkel, γ und β′, δ und α′ innere Wechselwinkel, α und γ′, β und δ′ äußere Winkel auf einer Seite, γ und α′, δ und β′ innere Winkel auf einer Seite. Je zwei korrespondierende Winkel und ebenso je zwei Wechselwinkel sind einander gleich, je zwei äußere und ebenso je zwei innere Winkel auf einer Seite dagegen betragen zusammen zwei Rechte. Aus jedem dieser Sätze ergeben sich die andern, und wenn einer dieser Sätze für zwei gegebene Linien a und b gilt, so sind dieselben p. Der Inbegriff dieser Sätze bildet die Parallelentheorie. Euklid gründete dieselbe in seinen Elementen auf das berühmte elfte Axiom: zwei Gerade, die von einer dritten so geschnitten werden, daß die beiden innern Winkel an einerlei Seite zusammen weniger als zwei Rechte betragen, schneiden sich auf dieser Seite. Es sind bis in die neueste Zeit zahlreiche Versuche gemacht worden, dieses und überhaupt jedes besondere Axiom für die Parallelentheorie entbehrlich zu machen und letztere bloß auf die Eigenschaften der geraden Linie zu gründen. Erst Gauß, N. Lobatschewski und J. Bolyai haben die Unmöglichkeit des Gelingens dieser Versuche erkannt, was zur Begründung der „nichteuklidischen“ oder „absoluten“ Geometrie Anlaß gegeben hat (vgl. Pangeometrie). – In der Rhetorik heißt p. dasjenige, was eine Vergleichung in seinen Teilen oder Eigenschaften gestattet, daher Parallele eine solche Vergleichung selbst. Namentlich ist letzterer Ausdruck gebräuchlich bei der historischen Vergleichung verschiedener Zeiten nach ihren Staatseinrichtungen und deren Veränderungen, leitenden Persönlichkeiten etc. (z. B. Plutarchs biographische Parallelen). Vgl. Parallelismus und Parallelstellen.