Zum Inhalt springen

Seite:VaricakRel1911.djvu/1

aus Wikisource, der freien Quellensammlung
Fertig. Dieser Text wurde zweimal anhand der Quelle korrekturgelesen. Die Schreibweise folgt dem Originaltext.
Zum Ehrenfestschen Paradoxon.
Von V. Varićak.


Das Zustandekommen des Ehrenfestschen Paradoxons ist einleuchtend, wenn man sich auf den Standpunkt stellt, den Lorentz bei der Aufstellung seiner Kontraktionshypothese eingenommen hat, d. h. wenn man die Kontraktion des bewegten starren Körpers in der Bewegungsrichtung als eine objektiv stattfindende Veränderung ansieht. Unabhängig von dem Beobachter wird sich jedes Element der Peripherie nach Lorentz tatsächlich verkürzen, während die Elemente eines Radius unverkürzt bleiben.

Stellt man sich hingegen auf den Einsteinschen Standpunkt, demzufolge die besagte Kontraktion nur eine scheinbare, subjektive Erscheinung ist, verursacht durch die Art unserer Uhrenregulierung und Längenmessung, so erscheint mir jener Widerspruch nicht begründet zu sein.

Daß Herr Ehrenfest bei seiner Argumentation den Lorentzschen Standpunkt einnimmt, schließe ich aus den Fragen, die er an Herrn v. Ignatowsky gerichtet hat[1], und hauptsächlich daraus, daß er jenen Widerspruch auch bei den Pausbildern und zu finden vermeint. Mir will es scheinen, daß jene Pausbilder identisch sein müssen; sie werden denselben Radius und dieselbe Peripherie haben.

Um das zu begründen, sei es mir gestattet, auf die gleichförmige Translation eines starren Körpers zurückzugreifen, an dem gewöhnlich jene Kontraktion als Begleiterscheinung der Translation demonstriert wird. An dem vorderen Ende des Stabes sei ein Spiegel befestigt und am rückwärtigen Ende befinde sich eine Lichtquelle. Die doppelte Länge des Stabes messen wir durch die Zeit, welche ein Lichtsignal braucht, um von nach und zurück nach A zu gelangen. Um bei diesen bekannten Sachen nicht weitläufig zu werden, verweise ich z. B. auf die Arbeit von Lewis und Tolman[2], die den radikalen Unterschied in den Lorentzschen und Einsteinschen Ansichten besonders stark betont haben. Dort kann man nachsehen, durch welche Überlegungen der ruhende Beobachter zur Annahme der Kontraktion des bewegten Stabes gezwungen wird. Aber er bleibt sich bewußt, daß diese Kontraktion sozusagen nur eine psychologische, und nicht eine physikalische Tatsache ist, d. h. daß der Körper in Wirklichkeit keine Änderung erfahren hat.

Nun führe der ruhende Beobachter mit diesem Stabe dasselbe Experiment aus, welches ihn Herr Ehrenfest mit der rotierenden Scheibe ausführen läßt[3]. Auf beiden Enden des Stabes sollen sich Marken befinden. Während der Stab ruht, hält der ruhende Beobachter ein Pauspapier über ihm und paust die Marken auf das ruhende Blatt durch.

Während sich der Stab gleichförmig in gerader Linie vorwärts bewegt, hält der ruhende Beobachter ein Pauspapier über ihm und paust in dem Moment, wo seine Uhr auf zeigt, mit einem Schlag beide Marken auf das ruhende Blatt durch.

Schließlich mißt der ruhende Beobachter die Entfernung jener Marken an den ruhenden Pausbildern und aus.

Ich glaube, daß er beidemal dieselbe Entfernung finden wird, denn der Stab ist in Wirklichkeit nicht kürzer geworden.

Das erwähnte Vorgehen des ruhenden Beobachters ist wohl identisch mit dem mechanischen Anlegen des Maßstabes an das auszumessende Objekt; das ist aber nicht dieselbe Operation wie das Ausmessen der Länge mit Hilfe der optischen Signale.

Kurz möchte ich noch erwähnen, daß bekanntlich die Uhren in den Punkten und des bewegten Stabes, obwohl sie gleichlaufend sind, verschiedene Zeiten angeben, wenn die Uhr des ruhenden Beobachters auf zeigt.

Nur noch eine historische Bemerkung. Nachdem Lorentz die Hypothese aufgestellt hatte, daß alle Körper in Richtung der Erdbewegung eine Verkürzung ihrer Dimensionen erleiden, lag die Frage nahe, ob diese Deformation, bzw. Komprimierung, bei durchsichtigen Körpern nicht von einer Doppelbrechung begleitet ist. Die bezüglichen Versuche von Rayleigh und Brace ergaben ein negatives Resultat.

Nach dem Relativitätsprinzip von Einstein wäre man überhaupt auf die Frage nicht gekommen.


  1. Diese Zeitschr. 11, 1129, 1910.
  2. G. N. Lewis and R. C. Tolman, The principle of relativity, and Non-Newtonian mechanics. Proceedings of the american academy of arts and sciences 44, 711, 1909. Neulich wurde auch von J. Laub mit Nachdruck darauf hingewiesen, daß in der Theorie von Lorentz die Auffassung dieser Erscheinung eine wesentlich andere ist wie bei Einstein. Siehe Jahrb. d. Radioaktivität und Elektronik 7, 430, 1910.
  3. Ich lasse dahingestellt die Frage, ob dieser Versuch vom relativistischen Standpunkt aus als möglich zu betrachten ist.
Empfohlene Zitierweise:
Vladimir Varićak: Zum Ehrenfestschen Paradoxon. S. Hirzel, Leipzig 1911, Seite 169. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:VaricakRel1911.djvu/1&oldid=- (Version vom 1.8.2018)