des Pfeils an, die Kraft NM ist aber so in Seitenkräfte zerlegt, dass die eine der Richtung nach mit der Tangente zusammenfällt. Rechts von C und D wirkt NM im entgegengesetzten Sinne, weil hier QP > QS ist.
No. 49. S. 179. Ist C die Centripetalkraft, R der Radius, T die Umlaufszeit, a eine Constante, so hat man C = a · , also T = . Es nimmt daher T in demselben Verhältniss ab und zu, in welchem zu- und abnimmt.
No. 50. S. 183. Ist Q sehr entfernt von S, so werden die Linien LM und QM in demselben Verhältniss wachsen, wie PS : QS grösser
wird. In diesem Falle wird die Kraft QN sehr klein, und man kann NM = QM — QN statt QM setzen.
Nach der ursprünglichen Voraussetzung sind ferner diese Kräfte proportional . Wenn daher QK und PS constant sind, wird dieses Verhältniss gleich .
No. 51. S. 183. Ist d der constante wirkliche Durchmesser des Körpers Q, ϱ der von S aus gesehene scheinbare Durchmesser desselben; so hat man ϱ = und daher ϱ³ proportional .
No. 52. S. 193. (Fig. 107.) Es ist DF = DS — FS und df = ds — fs, also DF : df = DS — FS : ds — fs. Werden nun die Winkel DPE = FSE und dpe = fse verschwindend klein, so geht FS in ES und fs in es über, und es wird die Proportion
No. 53. S. 193. Die bei der Umdrehung durch den Bogen JH beschriebene Zone ist = 2SA · π · p, wo p den Abstand des Punktes Q von dem Fusspunkte des aus H auf AB gefällten Perpendikels bezeichnet. Denkt man sich dieses Perpendikel gezogen, fällt man auf dasselbe aus J das Perpendikel JM = p und zieht man JS; so ist Δ JSQ ∼ HJM, also SJ : JQ = HJ : p SJ · p = SA · p = JQ · JH und endlich JQ · JH proportional 2SA · π · p.
Isaac Newton: Mathematische Principien der Naturlehre. Robert Oppenheim, Berlin 1872, Seite 587. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:NewtonPrincipien.djvu/595&oldid=- (Version vom 1.8.2018)