Schwere, Elektricität und Magnetismus:034
Bernhard Riemann: Schwere, Elektricität und Magnetismus | ||
---|---|---|
Seite 20 | ||
<< Zurück | Vorwärts >> | |
fertig | ||
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.
|
parallelen Radius liegt. Die vom Punkte nach dem Punkte gezogene gerade Linie schneidet die Kugel in einem Punkte, welcher durch seine Poldistanz und seine geographische Länge eindeutig festgelegt wird. Die Poldistanz des Punktes ist sein sphärischer Abstand vom Pol. Seine geographische Länge ist der sphärische Winkel, welchen sein Meridian mit dem Anfangsmeridian einschliesst. Irgend ein Punkt im Innern der anziehenden Masse wird dann einerseits durch seine rechtwinkligen Coordinaten , andererseits durch seine Kugel-Coordinaten festgelegt. Zur Transformation der Coordinaten dienen die Gleichungen
(2) |
|
Auf der Kugel vom Radius 1 wählen wir vier Punkte mit den sphärischen Coordinaten
und ziehen durch sie vom Punkte aus vier Strahlen, welche die Kanten einer vierseitigen Ecke bilden. Aus dieser Ecke schneiden die um als Mittelpunkt mit den Radien und gelegten Kugelflächen ein unendlich kleines Raumelement aus, dessen einer Eckpunkt im Punkte liegt. Die Masse dieses Raumelementes ist
Man kann sich dieselbe im Punkte concentrirt denken. Sie liefert zu der Potentialfunction den Beitrag
(3) |
Die Potentialfunction selbst wird hiernach
(4) |
Darin ist mit der Werth bezeichnet, welchen annimmt, wenn der Punkt in der Oberfläche der anziehenden Masse liegt. ist eine Function von und . Man erhält den Zusammenhang zwischen , indem man in die Gleichung der