Anwendung der Lobatschefskijschen Geometrie in der Relativtheorie
Für die Zusammensetzung der Geschwindigkeiten in der Relativtheorie gelten die Formeln der sphärischen Trigonometrie mit imaginären Seiten, wie Sommerfeld unlängst in dieser Zeitschrift ausgeführt hat[1]. Nun ist die nichteuklidische Geometrie von Lobatschefskij und Bolyai das imaginäre Gegenbild der sphärischen, und so ersieht man leicht, daß sich der hyperbolischen Geometrie ein interessantes Anwendungsgebiet eröffnet.
Da eine Relativbewegung von Bezugssystemen mit Überlichtgeschwindigkeit nicht vorkommt, kann man immer
setzen[2]. Der Faktor , der in den Lorentz-Einsteinschen Transformationsgleichungen und den draus abgeleiteten Formeln eine große Rolle spielt, geht in über. Setzt man noch , so lauten die Transformationsgleichungen[3]
|
(1) |
oder in der infinitesimalen Form
(2) |
Die inverse Transformation ist
|
(3) |
Die diesen Transformationen gegenüber invarianten Hyperbeln
sind ihre Bahnkurven, da ist. Die absolute Invariante ist der Koordinatenanfangspunkt. Wird ein Punkt
der Transformation (1) unterworfen, so geht er in den dem Parameter entsprechenden Punkt der Hyperbel über. Aus dem Unendlichen kommend, geht der bewegte Punkt auf der negativen Seite ins Unendliche[4]. Der Parameter ist die Maßzahl des doppelten Hyperbelsektors‚ der dem Winkel entspricht. Es ist
und die Gleichungen (3) gehen über in
|
(4) |
durch welche die Minkowskische Koordinatentransformation definiert ist[5]. Dabei bedeutet den Radiusvektor des entsprechenden Punktes der Hyperbel.
Deutet man als Strecke, so ersieht man aus den Relationen
daß der zugehörige Parallelwinkel mit dem entsprechenden Gudermannschen oder sogenannten transzendenten Winkel komplementär ist[6].
Schließen die Geschwindigkeiten und den Winkel ein, und ist
so trage man vom Punkte in der Richtung von die Strecke ab, und setze unter dem Winkel die Strecke an. Der Resultante entspricht die Strecke . In dem Lobatschefskijschen Dreiecke besteht die Relation
Setzt man hierin
so erhält man nach einigen leichten Umformungen das allgemeine Einsteinsche Additionstheorem der Geschwindigkeiten. Im Falle , wird
oder
beziehungsweise
Daß diese Addition nicht kommutativ ist, ersieht man leicht aus der ersten Sommerfeldschen Figur, die man jetzt aber als eine Figur in der Lobatschefskijschen Ebene aufzufassen hat. Man hat noch zu setzen
In der hyperbolischen Geometrie ist die Summe der Winkel in jedem Dreiecke kleiner als zwei rechte. Es ist also
und so fällt nicht in die Richtung von . Für den Richtungsunterschied findet man
Es ist auch
Sind und nicht in der -Ebene. sondern beliebig im Raume, so kommt man zu sechs Endpunkten, während wir oben nur die Punkte und hatten.
Ich will noch an einigen Beispielen zeigen, wie sich die Formeln von Einstein in der Lobatschefskijschen Geometrie reell deuten lassen.
Die Gleichungen (3) im § 5 der erwähnten Einsteinschen Abhandlung bestimmen in bezug auf das ruhende System die Geschwindigkeitskomponenten eines relativ zu gleichförmig bewegten Punktes. Ist , so wird
Nimmt man , dann schließt die Gerade, auf der jener Punkt bewegt wird, mit der -Achse den Winkel ein. Bleibt dagegen endlich und gleich der Fortpflanzungsgeschwindigkeit des Lichtes im leeren Raume, so findet man als Richtungskoeffizienten jener Geraden
Ist die Hypotenuse und ein spitzer Winkel im rechtwinkeligen Lobatschefskijschen Dreiecke, so ist der zweite spitze Winkel. Er wird desto kleiner, je größer die Translationsgeschwindigkeit von ist. Für hat man .
Nehmen wir als die Ausdehnung eines ruhenden Elektrons in der Richtung der -Achse. Wird es nun mit der Geschwindigkeit in derselben Richtung fortbewegt, so ist seine verkürzte Ausdehnung
Auf der Abstandslinie , welche die -Achse zur Mittellinie und zum Parameter hat, messe man von ihrem Durchschnittspunkte mit der Ordinatenachse angefangen die Länge ab. Die Abszisse von ist .
Ebenso läßt sich das Zurückbleiben der relativ zu einem Bezugssystem gleichförmig bewegten Uhr interpretieren.
Setzt man weiter
Dem Parallelwinkel entspricht die Länge , und so wird in diesem Falle
Es ist also
Für kleine Werte von kann man die höheren Potenzen vernachlässigen, und dann durch ersetzen. Die vorhergehende Formel geht in den Ausdruck für das Dopplersche Prinzip in der gewöhnlichen Mechanik über:
Man beachte, daß im gestrichenen Bezugssysteme ist.
Das Verhältnis der Frequenzen und in der Formel läßt sich darstellen als das Verhältnis zweier Grenzkreisbögen zwischen zwei gemeinsamen Achsen.
Der Ausdruck für die Aberration wird in
transformiert. Es ist also die Aberrationsgleichung
Der Lichtstrahl , von einer unendlich fernen Lichtquelle kommend, treffe die -Achse im Punkte unter dem spitzen Winkel . Man trage im Sinne der wachsenden Abszissen die Strecke ab, und ziehe von aus die Lobatschefskijsche Parallele zu . Diese Parallele schließt mit der -Achse den Winkel ein.
Ist , also , wo wird und der Winkel geht in seinen Supplement über.
Die Formeln der Relativtheorie werden in dieser Auffassung sehr vereinfacht. So z. B. für ein bewegtes Elektron von der Masse wird
transversale Masse = ,
statt[7]
Stellt (Fig. 1) die longitudinale Masse, so ist die transversale.
Krümmungsradius der Bahn, wenn eine senkrecht zur Geschwindigkeit des Elektrons wirkende magnetische Kraft vorhanden ist, wird
statt[8]
Ein in gleichförmiger Translationsbewegung in Richtung der wachsenden -Koordinate befindlicher Körper hat nach der Relativitätstheorie die kinetische Energie
wobei seine Masse im gewöhnlichen Sinne bedeutet[9]. Wir können das einfacher schreiben
Statt kann man auch schreiben, wobei den Flächeninhalt eines Saccherischen zweirechtwinkeligen und gleichschenkeligen Vierecks bedeutet. Seine drei Seiten, welche zwei rechte Winkel einschließen, haben zur Länge.
Hier wurde vorausgesetzt, daß dieser Körper den äußeren Kräften nicht unterworfen war. Wirken aber auf diesen Körper äußere Kräfte, welche einander Gleichgewicht halten, dem Körper also keine Beschleunigung erteilen, so wird nach Untersuchungen von Einstein[10] seine kinetische Energie merkwürdigerweise größer um
Nach unserer Festsetzung geht dieser Ausdruck in
über. Nehmen wir ein Lobatschefskijsches rechtwinkeliges Dreieck. Sind seine Katheten und die zu den Parallelwinkeln und gehörigen Strecken, und seine spitzen Winkel, so hat man einfach
Aus diesen wenigen Beispielen kann man schon ersehen, welchen Vorteil auch bei rechnerischer Auswertung die nichteuklidische Interpretation der Relativitätsformeln uns gewähren könnte. Für hyperbolische Funktionen haben wir ausgezeichnete Tafeln, die Smithsonian Institution 1909 herausgegeben hat.
Interessant sind jedenfalls die Analogien, die zwischen der Relativitätstheorie und der Lobatschefskijschen Geometrie bestehen. Die Formeln der neueren Mechanik reduzieren sich für auf die Formeln der Newtonschen Mechanik. So geht auch die Lobatschefskijsche Geometrie, wenn man eine gewisse Konstante – den sogenannten Krümmungsradius des Raumes – unendlich nimmt, in die euklidische Geometrie über. Für gewöhnliche Geschwindigkeiten unterscheiden sich die Resultate, die nach den Relativitätsformeln berechnet sind, praktisch gar nicht von jenen, die nach gewöhnlichen mechanischen Ausdrücken berechnet sind. So unterscheiden sich für die Strecken von gewöhnlichen Längen die Berechnungen nach der Lobatschefskijschen Geometrie gar nicht von denen nach der euklidischen. In der Relativtheorie existiert eine absolute Geschwindigkeit, in der Lobatschefskijschen Geometrie eine absolute Länge.
In der Relativitätstheorie erleidet Körper bei Bewegung gewisse Deformation. jeder In der Poincaréschen Interpretation der Lobatschefskijschen Geometrie nimmt man als Bogenelement , und dieses kann ohne Deformation nicht bewegt werden usw.
Agram, 8. Januar 1910.
- ↑ Diese Zeitschr. 10, 828, 1909.
- ↑ bedeutet Tangens hyperbolicus von , ebenso und Cosinus und Sinus hyperbolicus.
- ↑ Einstein, Jahrbuch der Radioaktivität 4, 420, 1908.
- ↑ Es erinnert an die Hyperbelbewegung bei Born, Ann. d. Phys. 11, 25, 1909.
- ↑ Im Zusammenhange mit den Minkowskischen Anschauungen über Raum und Zeit wird man nun wohl auch dem Büchlein von M. Palágyi, Neue Theorie des Raumes und der Zeit, Leipzig 1901, das ihm gebührende Interesse entgegenbringen.
- ↑ Vgl. Engel-Lobatschefskij, Zwei geometrische Abhandlungen. Leipzig 1898, S. 246.
- ↑ Einstein, Ann. d. Phys. 17, 919, 1905.
- ↑ a. a. O. S. 921.
- ↑ Einstein, Ann. d. Phys. 23, 374, 1907.
- ↑ Ebenda S. 376.